A Polymer Cochlear Electrode Array: Atraumatic Deep Insertion, Tripolar Stimulation, and Long-Term Reliability

Nonfiction, Science & Nature, Technology, Electronics, Circuits, Engineering
Cover of the book A Polymer Cochlear Electrode Array: Atraumatic Deep Insertion, Tripolar Stimulation, and Long-Term Reliability by Tae Mok Gwon, Springer Singapore
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Tae Mok Gwon ISBN: 9789811304729
Publisher: Springer Singapore Publication: May 24, 2018
Imprint: Springer Language: English
Author: Tae Mok Gwon
ISBN: 9789811304729
Publisher: Springer Singapore
Publication: May 24, 2018
Imprint: Springer
Language: English

This book describes the design, fabrication and evaluation of a polymer-based neural interface for a cochlear electrode array, reviewed in terms of fabrication process, functionality, and reliability. Polymer-based devices have attracted attention in the neural prosthetic field due to their flexibility and compatibility with micro-fabrication process. A liquid crystal polymer (LCP) is an inert, highly water-resistant polymer suitable for the encapsulation of electronic components and as a substrate material for fabricating neural interfaces. The author has designed, fabricated, and evaluated an LCP-based cochlear electrode array for an improved polymer-based cochlear implant. The thesis deals with 3 key topics: atraumatic deep insertion, tripolar stimulation, and long-term reliability. Atraumatic insertion of the intracochlear electrode and resulting preservation of residual hearing have become essential in state–of-the-art cochlear implantation. A novel tapered design of an LCP-based cochlear electrode array is presented to meet such goals. For high-density and pitch-recognizable cochlear implant, channel interaction should be avoided. Local tripolar stimulation using multi-layered electrode sites are shown to achieve highly focused electrical stimulation. This thesis addresses another vital issue in the polymer-based neural implants: the long-term reliability issue. After suggesting a new method of forming mechanical interlocking to improve polymer-metal adhesion, the author performs accelerating aging tests to verify the method’s efficacy. The aforementioned three topics have been thoroughly examined through various in vitro and in vivo studies. Verification foresees the development of LCP-based cochlear electrode array for an atraumatic deep insertion, advanced stimulation, and long-term clinical implant.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book describes the design, fabrication and evaluation of a polymer-based neural interface for a cochlear electrode array, reviewed in terms of fabrication process, functionality, and reliability. Polymer-based devices have attracted attention in the neural prosthetic field due to their flexibility and compatibility with micro-fabrication process. A liquid crystal polymer (LCP) is an inert, highly water-resistant polymer suitable for the encapsulation of electronic components and as a substrate material for fabricating neural interfaces. The author has designed, fabricated, and evaluated an LCP-based cochlear electrode array for an improved polymer-based cochlear implant. The thesis deals with 3 key topics: atraumatic deep insertion, tripolar stimulation, and long-term reliability. Atraumatic insertion of the intracochlear electrode and resulting preservation of residual hearing have become essential in state–of-the-art cochlear implantation. A novel tapered design of an LCP-based cochlear electrode array is presented to meet such goals. For high-density and pitch-recognizable cochlear implant, channel interaction should be avoided. Local tripolar stimulation using multi-layered electrode sites are shown to achieve highly focused electrical stimulation. This thesis addresses another vital issue in the polymer-based neural implants: the long-term reliability issue. After suggesting a new method of forming mechanical interlocking to improve polymer-metal adhesion, the author performs accelerating aging tests to verify the method’s efficacy. The aforementioned three topics have been thoroughly examined through various in vitro and in vivo studies. Verification foresees the development of LCP-based cochlear electrode array for an atraumatic deep insertion, advanced stimulation, and long-term clinical implant.

More books from Springer Singapore

Cover of the book Learning and Teaching with Technology in the Knowledge Society by Tae Mok Gwon
Cover of the book Signal Processing in Neuroscience by Tae Mok Gwon
Cover of the book GI Surgery Annual by Tae Mok Gwon
Cover of the book Analysis and Synthesis of Positive Systems Under ℓ1 and L1 Performance by Tae Mok Gwon
Cover of the book Hepatitis C Virus Treatment by Tae Mok Gwon
Cover of the book Data, Engineering and Applications by Tae Mok Gwon
Cover of the book Sustainability Issues in Civil Engineering by Tae Mok Gwon
Cover of the book Man-Machine-Environment System Engineering by Tae Mok Gwon
Cover of the book Wireless Sensor Networks by Tae Mok Gwon
Cover of the book China‘s Macroeconomic Outlook by Tae Mok Gwon
Cover of the book Proceedings of 2016 Chinese Intelligent Systems Conference by Tae Mok Gwon
Cover of the book Life and Death Decisions in the Clinical Setting by Tae Mok Gwon
Cover of the book International Governance and Risk Management by Tae Mok Gwon
Cover of the book The Modernization of China’s State Governance by Tae Mok Gwon
Cover of the book Computational and Corpus Approaches to Chinese Language Learning by Tae Mok Gwon
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy