Advances in Neuromorphic Hardware Exploiting Emerging Nanoscale Devices

Nonfiction, Science & Nature, Technology, Electronics, Circuits, Computers, Advanced Computing, Programming, User Interfaces
Cover of the book Advances in Neuromorphic Hardware Exploiting Emerging Nanoscale Devices by , Springer India
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9788132237037
Publisher: Springer India Publication: January 21, 2017
Imprint: Springer Language: English
Author:
ISBN: 9788132237037
Publisher: Springer India
Publication: January 21, 2017
Imprint: Springer
Language: English

This book covers all major aspects of cutting-edge research in the field of neuromorphic hardware engineering involving emerging nanoscale devices. Special emphasis is given to leading works in hybrid low-power CMOS-Nanodevice design. The book offers readers a bidirectional (top-down and bottom-up) perspective on designing efficient bio-inspired hardware. At the nanodevice level, it focuses on various flavors of emerging resistive memory (RRAM) technology. At the algorithm level, it addresses optimized implementations of supervised and stochastic learning paradigms such as: spike-time-dependent plasticity (STDP), long-term potentiation (LTP), long-term depression (LTD), extreme learning machines (ELM) and early adoptions of restricted Boltzmann machines (RBM) to name a few. The contributions discuss system-level power/energy/parasitic trade-offs, and complex real-world applications. The book is suited for both advanced researchers and students interested in the field.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book covers all major aspects of cutting-edge research in the field of neuromorphic hardware engineering involving emerging nanoscale devices. Special emphasis is given to leading works in hybrid low-power CMOS-Nanodevice design. The book offers readers a bidirectional (top-down and bottom-up) perspective on designing efficient bio-inspired hardware. At the nanodevice level, it focuses on various flavors of emerging resistive memory (RRAM) technology. At the algorithm level, it addresses optimized implementations of supervised and stochastic learning paradigms such as: spike-time-dependent plasticity (STDP), long-term potentiation (LTP), long-term depression (LTD), extreme learning machines (ELM) and early adoptions of restricted Boltzmann machines (RBM) to name a few. The contributions discuss system-level power/energy/parasitic trade-offs, and complex real-world applications. The book is suited for both advanced researchers and students interested in the field.

More books from Springer India

Cover of the book Digital Logic Design Using Verilog by
Cover of the book Advances in Biotechnology by
Cover of the book The Rise of Acid Reflux in Asia by
Cover of the book Biogeogens and Human Health by
Cover of the book Early Software Reliability Prediction by
Cover of the book Genetic Mapping and Marker Assisted Selection by
Cover of the book A Practical Approach to Cognitive Behaviour Therapy for Adolescents by
Cover of the book Enabling Environment by
Cover of the book Perspectives in Regenerative Medicine by
Cover of the book An Investigation into the Detection and Mitigation of Denial of Service (DoS) Attacks by
Cover of the book Big Data by
Cover of the book Sustainable Horticulture in Semiarid Dry Lands by
Cover of the book Applied Mathematics by
Cover of the book The Mathematical Legacy of Srinivasa Ramanujan by
Cover of the book Inflammation: Natural Resources and Its Applications by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy