Beauville Surfaces and Groups

Nonfiction, Science & Nature, Mathematics, Geometry, Algebra
Cover of the book Beauville Surfaces and Groups by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319138626
Publisher: Springer International Publishing Publication: April 14, 2015
Imprint: Springer Language: English
Author:
ISBN: 9783319138626
Publisher: Springer International Publishing
Publication: April 14, 2015
Imprint: Springer
Language: English

This collection of surveys and research articles explores a fascinating class of varieties: Beauville surfaces. It is the first time that these objects are discussed from the points of view of algebraic geometry as well as group theory. The book also includes various open problems and conjectures related to these surfaces.

Beauville surfaces are a class of rigid regular surfaces of general type, which can be described in a purely algebraic combinatoric way. They play an important role in different fields of mathematics like algebraic geometry, group theory and number theory. The notion of Beauville surface was introduced by Fabrizio Catanese in 2000 and after the first systematic study of these surfaces by Ingrid Bauer, Fabrizio Catanese and Fritz Grunewald, there has been an increasing interest in the subject.

These proceedings reflect the topics of the lectures presented during the workshop ‘Beauville surfaces and groups 2012’, held at Newcastle University, UK in June 2012. This conference brought together, for the first time, experts of different fields of mathematics interested in Beauville surfaces.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This collection of surveys and research articles explores a fascinating class of varieties: Beauville surfaces. It is the first time that these objects are discussed from the points of view of algebraic geometry as well as group theory. The book also includes various open problems and conjectures related to these surfaces.

Beauville surfaces are a class of rigid regular surfaces of general type, which can be described in a purely algebraic combinatoric way. They play an important role in different fields of mathematics like algebraic geometry, group theory and number theory. The notion of Beauville surface was introduced by Fabrizio Catanese in 2000 and after the first systematic study of these surfaces by Ingrid Bauer, Fabrizio Catanese and Fritz Grunewald, there has been an increasing interest in the subject.

These proceedings reflect the topics of the lectures presented during the workshop ‘Beauville surfaces and groups 2012’, held at Newcastle University, UK in June 2012. This conference brought together, for the first time, experts of different fields of mathematics interested in Beauville surfaces.

More books from Springer International Publishing

Cover of the book Brain Drain and Gender Inequality in Turkey by
Cover of the book Theoretical Physics 4 by
Cover of the book The Palgrave Handbook of Literary Translation by
Cover of the book Software Engineering Research, Management and Applications by
Cover of the book Symbolic and Quantitative Approaches to Reasoning with Uncertainty by
Cover of the book Terahertz Planar Antennas for Next Generation Communication by
Cover of the book Cutting Edge of Ophthalmic Surgery by
Cover of the book Naval Modernisation in Southeast Asia by
Cover of the book Concentration Inequalities for Sums and Martingales by
Cover of the book Algorithms for Computational Biology by
Cover of the book Gravitational Atlas of Antarctica by
Cover of the book Security and Trust Management by
Cover of the book Harmonic Analysis, Partial Differential Equations, Complex Analysis, Banach Spaces, and Operator Theory (Volume 1) by
Cover of the book Surgical Patient Care by
Cover of the book Complicite, Theatre and Aesthetics by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy