Deep Learning and Convolutional Neural Networks for Medical Image Computing

Precision Medicine, High Performance and Large-Scale Datasets

Nonfiction, Computers, Advanced Computing, Artificial Intelligence, Application Software, Computer Graphics, General Computing
Cover of the book Deep Learning and Convolutional Neural Networks for Medical Image Computing by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319429991
Publisher: Springer International Publishing Publication: July 12, 2017
Imprint: Springer Language: English
Author:
ISBN: 9783319429991
Publisher: Springer International Publishing
Publication: July 12, 2017
Imprint: Springer
Language: English

This book presents a detailed review of the state of the art in deep learning approaches for semantic object detection and segmentation in medical image computing, and large-scale radiology database mining. A particular focus is placed on the application of convolutional neural networks, with the theory supported by practical examples. Features: highlights how the use of deep neural networks can address new questions and protocols, as well as improve upon existing challenges in medical image computing; discusses the insightful research experience of Dr. Ronald M. Summers; presents a comprehensive review of the latest research and literature; describes a range of different methods that make use of deep learning for object or landmark detection tasks in 2D and 3D medical imaging; examines a varied selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to interleaved text and image deep mining on a large-scale radiology image database.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book presents a detailed review of the state of the art in deep learning approaches for semantic object detection and segmentation in medical image computing, and large-scale radiology database mining. A particular focus is placed on the application of convolutional neural networks, with the theory supported by practical examples. Features: highlights how the use of deep neural networks can address new questions and protocols, as well as improve upon existing challenges in medical image computing; discusses the insightful research experience of Dr. Ronald M. Summers; presents a comprehensive review of the latest research and literature; describes a range of different methods that make use of deep learning for object or landmark detection tasks in 2D and 3D medical imaging; examines a varied selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to interleaved text and image deep mining on a large-scale radiology image database.

More books from Springer International Publishing

Cover of the book Making Sport Great Again by
Cover of the book Functional Verification of Dynamically Reconfigurable FPGA-based Systems by
Cover of the book Energy and the Wealth of Nations by
Cover of the book Cartilage by
Cover of the book An Introduction to the Mathematical Theory of Dynamic Materials by
Cover of the book Time Division Multiple Access For Vehicular Communications by
Cover of the book A Study of Professional Skepticism by
Cover of the book An Overview of the SIGMA Research Project by
Cover of the book Past and Present Interactions in Legal Reasoning and Logic by
Cover of the book Computer-Assisted and Robotic Endoscopy by
Cover of the book Hemodialysis Access by
Cover of the book A Panorama of Discrepancy Theory by
Cover of the book Stochastic Processes and Calculus by
Cover of the book Mediterranean Green Buildings & Renewable Energy by
Cover of the book Statistical Approaches for Landslide Susceptibility Assessment and Prediction by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy