Diagram Genus, Generators, and Applications

Nonfiction, Science & Nature, Mathematics, Combinatorics, Arithmetic, Geometry
Cover of the book Diagram Genus, Generators, and Applications by Alexander Stoimenow, CRC Press
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Alexander Stoimenow ISBN: 9781315359984
Publisher: CRC Press Publication: September 3, 2018
Imprint: Chapman and Hall/CRC Language: English
Author: Alexander Stoimenow
ISBN: 9781315359984
Publisher: CRC Press
Publication: September 3, 2018
Imprint: Chapman and Hall/CRC
Language: English

In knot theory, diagrams of a given canonical genus can be described by means of a finite number of patterns ("generators"). Diagram Genus, Generators and Applications presents a self-contained account of the canonical genus: the genus of knot diagrams. The author explores recent research on the combinatorial theory of knots and supplies proofs for a number of theorems.

The book begins with an introduction to the origin of knot tables and the background details, including diagrams, surfaces, and invariants. It then derives a new description of generators using Hirasawa’s algorithm and extends this description to push the compilation of knot generators one genus further to complete their classification for genus 4. Subsequent chapters cover applications of the genus 4 classification, including the braid index, polynomial invariants, hyperbolic volume, and Vassiliev invariants. The final chapter presents further research related to generators, which helps readers see applications of generators in a broader context.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

In knot theory, diagrams of a given canonical genus can be described by means of a finite number of patterns ("generators"). Diagram Genus, Generators and Applications presents a self-contained account of the canonical genus: the genus of knot diagrams. The author explores recent research on the combinatorial theory of knots and supplies proofs for a number of theorems.

The book begins with an introduction to the origin of knot tables and the background details, including diagrams, surfaces, and invariants. It then derives a new description of generators using Hirasawa’s algorithm and extends this description to push the compilation of knot generators one genus further to complete their classification for genus 4. Subsequent chapters cover applications of the genus 4 classification, including the braid index, polynomial invariants, hyperbolic volume, and Vassiliev invariants. The final chapter presents further research related to generators, which helps readers see applications of generators in a broader context.

More books from CRC Press

Cover of the book Thermodynamics and Energy Systems Analysis by Alexander Stoimenow
Cover of the book The Science of Composting by Alexander Stoimenow
Cover of the book Food Protection Technology by Alexander Stoimenow
Cover of the book A Lifecycle Approach to Knowledge Excellence in the Biopharmaceutical Industry by Alexander Stoimenow
Cover of the book The Politics-Administration Dichotomy by Alexander Stoimenow
Cover of the book Multisensor Data Fusion by Alexander Stoimenow
Cover of the book Twice the First by Alexander Stoimenow
Cover of the book Materials in Nuclear Energy Applications by Alexander Stoimenow
Cover of the book Handbook of Agricultural Productivity by Alexander Stoimenow
Cover of the book Powder and Bulk Solids Handling Processes by Alexander Stoimenow
Cover of the book Adapting Buildings for Changing Uses by Alexander Stoimenow
Cover of the book Digital Protective Relays by Alexander Stoimenow
Cover of the book 3D Animation for the Raw Beginner Using Autodesk Maya 2e by Alexander Stoimenow
Cover of the book Microbiological Examination of Water and Wastewater by Alexander Stoimenow
Cover of the book Sensors for Diagnostics and Monitoring by Alexander Stoimenow
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy