Ergodic Theory and Negative Curvature

CIRM Jean-Morlet Chair, Fall 2013

Nonfiction, Science & Nature, Mathematics, Mathematical Analysis, Geometry
Cover of the book Ergodic Theory and Negative Curvature by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319430591
Publisher: Springer International Publishing Publication: December 15, 2017
Imprint: Springer Language: English
Author:
ISBN: 9783319430591
Publisher: Springer International Publishing
Publication: December 15, 2017
Imprint: Springer
Language: English

Focussing on the mathematics related to the recent proof of ergodicity of the (Weil–Petersson) geodesic flow on a nonpositively curved space whose points are negatively curved metrics on surfaces, this book provides a broad introduction to an important current area of research. It offers original textbook-level material suitable for introductory or advanced courses as well as deep insights into the state of the art of the field, making it useful as a reference and for self-study. 

The first chapters introduce hyperbolic dynamics, ergodic theory and geodesic and horocycle flows, and include an English translation of Hadamard's original proof of the Stable-Manifold Theorem. An outline of the strategy, motivation and context behind the ergodicity proof is followed by a careful exposition of it (using the Hopf argument) and of the pertinent context of Teichmüller theory. Finally, some complementary lectures describe the deep connections between geodesic flows in negative curvature and Diophantine approximation.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Focussing on the mathematics related to the recent proof of ergodicity of the (Weil–Petersson) geodesic flow on a nonpositively curved space whose points are negatively curved metrics on surfaces, this book provides a broad introduction to an important current area of research. It offers original textbook-level material suitable for introductory or advanced courses as well as deep insights into the state of the art of the field, making it useful as a reference and for self-study. 

The first chapters introduce hyperbolic dynamics, ergodic theory and geodesic and horocycle flows, and include an English translation of Hadamard's original proof of the Stable-Manifold Theorem. An outline of the strategy, motivation and context behind the ergodicity proof is followed by a careful exposition of it (using the Hopf argument) and of the pertinent context of Teichmüller theory. Finally, some complementary lectures describe the deep connections between geodesic flows in negative curvature and Diophantine approximation.

More books from Springer International Publishing

Cover of the book Otitis Media: State of the art concepts and treatment by
Cover of the book Perspectives on Culture and Agent-based Simulations by
Cover of the book Likelihood-Free Methods for Cognitive Science by
Cover of the book Tissue Engineering for the Heart by
Cover of the book Surprise: An Emotion? by
Cover of the book The Drivers of Wearable Device Usage by
Cover of the book The Transformation of Georgia from 2004 to 2012 by
Cover of the book Social Movements and the Change of Economic Elites in Europe after 1945 by
Cover of the book Risk Management of Education Systems by
Cover of the book Police Chiefs in the UK by
Cover of the book Endothelial Progenitor Cells by
Cover of the book Nanotechnology and Ethical Governance in the European Union and China by
Cover of the book Fractional Thermoelasticity by
Cover of the book Chromatographic Fingerprint Analysis of Herbal Medicines Volume IV by
Cover of the book Reappraising European IR Theoretical Traditions by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy