Fault Tolerant Architectures for Cryptography and Hardware Security

Nonfiction, Science & Nature, Technology, Electronics, Circuits, Computers, Networking & Communications, Computer Security
Cover of the book Fault Tolerant Architectures for Cryptography and Hardware Security by , Springer Singapore
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9789811013874
Publisher: Springer Singapore Publication: March 29, 2018
Imprint: Springer Language: English
Author:
ISBN: 9789811013874
Publisher: Springer Singapore
Publication: March 29, 2018
Imprint: Springer
Language: English

This book uses motivating examples and real-life attack scenarios to introduce readers to the general concept of fault attacks in cryptography. It offers insights into how the fault tolerance theories developed in the book can actually be implemented, with a particular focus on a wide spectrum of fault models and practical fault injection techniques, ranging from simple, low-cost techniques to high-end equipment-based methods.  It then individually examines fault attack vulnerabilities in symmetric, asymmetric and authenticated encryption systems. This is followed by extensive coverage of countermeasure techniques and fault tolerant architectures that attempt to thwart such vulnerabilities. Lastly, it presents a case study of a comprehensive FPGA-based fault tolerant architecture for AES-128, which brings together of a number of the fault tolerance techniques presented. It concludes with a discussion on how fault tolerance can be combined with side channel security to achieve protection against implementation-based attacks. The text is supported by illustrative diagrams, algorithms, tables and diagrams presenting real-world experimental results.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book uses motivating examples and real-life attack scenarios to introduce readers to the general concept of fault attacks in cryptography. It offers insights into how the fault tolerance theories developed in the book can actually be implemented, with a particular focus on a wide spectrum of fault models and practical fault injection techniques, ranging from simple, low-cost techniques to high-end equipment-based methods.  It then individually examines fault attack vulnerabilities in symmetric, asymmetric and authenticated encryption systems. This is followed by extensive coverage of countermeasure techniques and fault tolerant architectures that attempt to thwart such vulnerabilities. Lastly, it presents a case study of a comprehensive FPGA-based fault tolerant architecture for AES-128, which brings together of a number of the fault tolerance techniques presented. It concludes with a discussion on how fault tolerance can be combined with side channel security to achieve protection against implementation-based attacks. The text is supported by illustrative diagrams, algorithms, tables and diagrams presenting real-world experimental results.

More books from Springer Singapore

Cover of the book Technology, Research and Professional Learning by
Cover of the book Data Science and Big Data Analytics by
Cover of the book Development and Quantification of Sustainability Indicators by
Cover of the book Proceedings of Fifth International Conference on Soft Computing for Problem Solving by
Cover of the book The Past and Future of International Monetary System by
Cover of the book Securing Our Natural Wealth by
Cover of the book Infrastructure Monitoring with Spaceborne SAR Sensors by
Cover of the book Internet Video Data Streaming by
Cover of the book Knowledge Creation in Education by
Cover of the book Translational Biomedical Informatics by
Cover of the book Manufacturing Servitization in the Asia-Pacific by
Cover of the book Carbon Fibers by
Cover of the book Nanotoxicology in Caenorhabditis elegans by
Cover of the book Observed Climate Variability and Change over the Indian Region by
Cover of the book Deep Learning with R by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy