Harmonic Analysis on Exponential Solvable Lie Groups

Nonfiction, Science & Nature, Mathematics, Group Theory, Mathematical Analysis
Cover of the book Harmonic Analysis on Exponential Solvable Lie Groups by Hidenori Fujiwara, Jean Ludwig, Springer Japan
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Hidenori Fujiwara, Jean Ludwig ISBN: 9784431552888
Publisher: Springer Japan Publication: December 5, 2014
Imprint: Springer Language: English
Author: Hidenori Fujiwara, Jean Ludwig
ISBN: 9784431552888
Publisher: Springer Japan
Publication: December 5, 2014
Imprint: Springer
Language: English

This book is the first one that brings together recent results on the harmonic analysis of exponential solvable Lie groups. There still are many interesting open problems, and the book contributes to the future progress of this research field. As well, various related topics are presented to motivate young researchers.

The orbit method invented by Kirillov is applied to study basic problems in the analysis on exponential solvable Lie groups. This method tells us that the unitary dual of these groups is realized as the space of their coadjoint orbits. This fact is established using the Mackey theory for induced representations, and that mechanism is explained first. One of the fundamental problems in the representation theory is the irreducible decomposition of induced or restricted representations. Therefore, these decompositions are studied in detail before proceeding to various related problems: the multiplicity formula, Plancherel formulas, intertwining operators, Frobenius reciprocity, and associated algebras of invariant differential operators.

The main reasoning in the proof of the assertions made here is induction, and for this there are not many tools available. Thus a detailed analysis of the objects listed above is difficult even for exponential solvable Lie groups, and it is often assumed that G is nilpotent. To make the situation clearer and future development possible, many concrete examples are provided. Various topics presented in the nilpotent case still have to be studied for solvable Lie groups that are not nilpotent. They all present interesting and important but difficult problems, however, which should be addressed in the near future. Beyond the exponential case, holomorphically induced representations introduced by Auslander and Kostant are needed, and for that reason they are included in this book.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book is the first one that brings together recent results on the harmonic analysis of exponential solvable Lie groups. There still are many interesting open problems, and the book contributes to the future progress of this research field. As well, various related topics are presented to motivate young researchers.

The orbit method invented by Kirillov is applied to study basic problems in the analysis on exponential solvable Lie groups. This method tells us that the unitary dual of these groups is realized as the space of their coadjoint orbits. This fact is established using the Mackey theory for induced representations, and that mechanism is explained first. One of the fundamental problems in the representation theory is the irreducible decomposition of induced or restricted representations. Therefore, these decompositions are studied in detail before proceeding to various related problems: the multiplicity formula, Plancherel formulas, intertwining operators, Frobenius reciprocity, and associated algebras of invariant differential operators.

The main reasoning in the proof of the assertions made here is induction, and for this there are not many tools available. Thus a detailed analysis of the objects listed above is difficult even for exponential solvable Lie groups, and it is often assumed that G is nilpotent. To make the situation clearer and future development possible, many concrete examples are provided. Various topics presented in the nilpotent case still have to be studied for solvable Lie groups that are not nilpotent. They all present interesting and important but difficult problems, however, which should be addressed in the near future. Beyond the exponential case, holomorphically induced representations introduced by Auslander and Kostant are needed, and for that reason they are included in this book.

More books from Springer Japan

Cover of the book Anionic Polymerization by Hidenori Fujiwara, Jean Ludwig
Cover of the book Hydraulically Actuated Hexapod Robots by Hidenori Fujiwara, Jean Ludwig
Cover of the book Seasonality and Microcredit by Hidenori Fujiwara, Jean Ludwig
Cover of the book Computer-Assisted Neurosurgery by Hidenori Fujiwara, Jean Ludwig
Cover of the book Elements of Neo-Walrasian Economics by Hidenori Fujiwara, Jean Ludwig
Cover of the book Smart Biomaterials by Hidenori Fujiwara, Jean Ludwig
Cover of the book Integrated Studies of Social and Natural Environmental Transition in Laos by Hidenori Fujiwara, Jean Ludwig
Cover of the book Myelinated Fibers and Saltatory Conduction in the Shrimp by Hidenori Fujiwara, Jean Ludwig
Cover of the book Defects and Impurities in Silicon Materials by Hidenori Fujiwara, Jean Ludwig
Cover of the book Regional Free Trade Areas and Strategic Trade Policies by Hidenori Fujiwara, Jean Ludwig
Cover of the book Time Series Modeling for Analysis and Control by Hidenori Fujiwara, Jean Ludwig
Cover of the book Multiphysics in Nanostructures by Hidenori Fujiwara, Jean Ludwig
Cover of the book Blood Flow in the Heart and Large Vessels by Hidenori Fujiwara, Jean Ludwig
Cover of the book Contemporary Issues in Environmental Law by Hidenori Fujiwara, Jean Ludwig
Cover of the book Cybernics by Hidenori Fujiwara, Jean Ludwig
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy