Lipid Hydroperoxide-Derived Modification of Biomolecules

Nonfiction, Science & Nature, Science, Biological Sciences, Biochemistry, Health & Well Being, Medical, Specialties, Oncology
Cover of the book Lipid Hydroperoxide-Derived Modification of Biomolecules by , Springer Netherlands
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9789400779204
Publisher: Springer Netherlands Publication: December 28, 2013
Imprint: Springer Language: English
Author:
ISBN: 9789400779204
Publisher: Springer Netherlands
Publication: December 28, 2013
Imprint: Springer
Language: English

Lipid peroxidation is an important cellular process which can lead to detrimental effects if it is not regulated efficiently. Lipid hydroperoxide is formed in an initial step of lipid peroxidation. Lipid hydroperoxide is also known as a potential source of singlet oxygen. Harmful aldehydes are formed when the lipid hydroperoxide is degraded. The formed aldehyde has high reactivity against thiol or amine moieties. Therefore, it could act as a signaling molecule, which might induce the changing of gears inside a cell. Recent studies have shown that lipid hydroperoxide or a slightly modified product of the lipid hydroperoxide reacts with biomolecules such as proteins and aminophospholipids, which leads to formation of amide-type adducts. Amide-type adducts could be one of markers for oxidative stress and could also be an important player in some diseases. In this book, the chemistry and biochemistry of lipid hydroperoxide along with their conjugates with biomolecules are described.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Lipid peroxidation is an important cellular process which can lead to detrimental effects if it is not regulated efficiently. Lipid hydroperoxide is formed in an initial step of lipid peroxidation. Lipid hydroperoxide is also known as a potential source of singlet oxygen. Harmful aldehydes are formed when the lipid hydroperoxide is degraded. The formed aldehyde has high reactivity against thiol or amine moieties. Therefore, it could act as a signaling molecule, which might induce the changing of gears inside a cell. Recent studies have shown that lipid hydroperoxide or a slightly modified product of the lipid hydroperoxide reacts with biomolecules such as proteins and aminophospholipids, which leads to formation of amide-type adducts. Amide-type adducts could be one of markers for oxidative stress and could also be an important player in some diseases. In this book, the chemistry and biochemistry of lipid hydroperoxide along with their conjugates with biomolecules are described.

More books from Springer Netherlands

Cover of the book Metabolic Processes in the Foetus and Newborn Infant by
Cover of the book “Moral Order” and The Criminal Law by
Cover of the book The Web of Violence by
Cover of the book Probabilistic Thinking by
Cover of the book Special Types of Life Cycle Assessment by
Cover of the book The Social Direction of the Public Sciences by
Cover of the book Logics of Socialist Education by
Cover of the book Methane Production from Agricultural and Domestic Wastes by
Cover of the book The Collected Works of Aron Gurwitsch (1901-1973) by
Cover of the book Energetics and Human Information Processing by
Cover of the book Complexity, Difference and Identity by
Cover of the book Problem-Based Learning in Clinical Education by
Cover of the book Methodological Choice and Design by
Cover of the book Clinical Research in Gastroenterology 1 by
Cover of the book Sustaining Young Forest Communities by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy