Machine Learning and Knowledge Discovery in Databases

European Conference, ECML PKDD 2017, Skopje, Macedonia, September 18–22, 2017, Proceedings, Part I

Nonfiction, Computers, Advanced Computing, Artificial Intelligence, Database Management, General Computing
Cover of the book Machine Learning and Knowledge Discovery in Databases by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319712499
Publisher: Springer International Publishing Publication: December 29, 2017
Imprint: Springer Language: English
Author:
ISBN: 9783319712499
Publisher: Springer International Publishing
Publication: December 29, 2017
Imprint: Springer
Language: English

The three volume proceedings LNAI 10534 – 10536 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2017, held in Skopje, Macedonia, in September 2017. 

The total of 101 regular papers presented in part I and part II was carefully reviewed and selected from 364 submissions; there are 47 papers in the applied data science, nectar and demo track. 

The contributions were organized in topical sections named as follows:
Part I: anomaly detection; computer vision; ensembles and meta learning; feature selection and extraction; kernel methods; learning and optimization, matrix and tensor factorization; networks and graphs; neural networks and deep learning.
Part II: pattern and sequence mining; privacy and security; probabilistic models and methods; recommendation; regression; reinforcement learning; subgroup discovery; time series and streams; transfer and multi-task learning; unsupervised and semisupervised learning.
Part III: applied data science track; nectar track; and demo track.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The three volume proceedings LNAI 10534 – 10536 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2017, held in Skopje, Macedonia, in September 2017. 

The total of 101 regular papers presented in part I and part II was carefully reviewed and selected from 364 submissions; there are 47 papers in the applied data science, nectar and demo track. 

The contributions were organized in topical sections named as follows:
Part I: anomaly detection; computer vision; ensembles and meta learning; feature selection and extraction; kernel methods; learning and optimization, matrix and tensor factorization; networks and graphs; neural networks and deep learning.
Part II: pattern and sequence mining; privacy and security; probabilistic models and methods; recommendation; regression; reinforcement learning; subgroup discovery; time series and streams; transfer and multi-task learning; unsupervised and semisupervised learning.
Part III: applied data science track; nectar track; and demo track.

More books from Springer International Publishing

Cover of the book Recent Advances in Game Theory and Applications by
Cover of the book Entrepreneurship and Organizational Innovation by
Cover of the book The Iran Nuclear Deal by
Cover of the book Asteroids Impacts, Crustal Evolution and Related Mineral Systems with Special Reference to Australia by
Cover of the book Ethnic Landscapes of America by
Cover of the book Information Security and Cryptology by
Cover of the book Disc Winds Matter by
Cover of the book Arts, Research, Innovation and Society by
Cover of the book Information Security by
Cover of the book Community Education and Neoliberalism by
Cover of the book Contemporary Treatment of Erectile Dysfunction by
Cover of the book Optical Network Design and Planning by
Cover of the book The Social Developmental Construction of Violence and Intergroup Conflict by
Cover of the book Chinese Agriculture in the 1930s by
Cover of the book Post-Silicon Validation and Debug by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy