Non-Euclidean Geometry

Fifth Edition

Nonfiction, Science & Nature, Mathematics, Geometry
Cover of the book Non-Euclidean Geometry by H.S.M. Coxeter, University of Toronto Press, Scholarly Publishing Division
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: H.S.M. Coxeter ISBN: 9781442637740
Publisher: University of Toronto Press, Scholarly Publishing Division Publication: December 15, 1965
Imprint: Language: English
Author: H.S.M. Coxeter
ISBN: 9781442637740
Publisher: University of Toronto Press, Scholarly Publishing Division
Publication: December 15, 1965
Imprint:
Language: English

The name non-Euclidean was used by Gauss to describe a system of geometry which differs from Euclid's in its properties of parallelism. Such a system was developed independently by Bolyai in Hungary and Lobatschewsky in Russia, about 120 years ago. Another system, differing more radically from Euclid's, was suggested later by Riemann in Germany and Cayley in England. The subject was unified in 1871 by Klein, who gave the names of parabolic, hyperbolic, and elliptic to the respective systems of Euclid-Bolyai-Lobatschewsky, and Riemann-Cayley. Since then, a vast literature has accumulated.

The Fifth edition adds a new chapter, which includes a description of the two families of 'mid-lines' between two given lines, an elementary derivation of the basic formulae of spherical trigonometry and hyperbolic trigonometry, a computation of the Gaussian curvature of the elliptic and hyperbolic planes, and a proof of Schlafli's remarkable formula for the differential of the volume of a tetrahedron.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The name non-Euclidean was used by Gauss to describe a system of geometry which differs from Euclid's in its properties of parallelism. Such a system was developed independently by Bolyai in Hungary and Lobatschewsky in Russia, about 120 years ago. Another system, differing more radically from Euclid's, was suggested later by Riemann in Germany and Cayley in England. The subject was unified in 1871 by Klein, who gave the names of parabolic, hyperbolic, and elliptic to the respective systems of Euclid-Bolyai-Lobatschewsky, and Riemann-Cayley. Since then, a vast literature has accumulated.

The Fifth edition adds a new chapter, which includes a description of the two families of 'mid-lines' between two given lines, an elementary derivation of the basic formulae of spherical trigonometry and hyperbolic trigonometry, a computation of the Gaussian curvature of the elliptic and hyperbolic planes, and a proof of Schlafli's remarkable formula for the differential of the volume of a tetrahedron.

More books from University of Toronto Press, Scholarly Publishing Division

Cover of the book No Trespassing by H.S.M. Coxeter
Cover of the book Sir Robert Falconer by H.S.M. Coxeter
Cover of the book Arduous Tasks by H.S.M. Coxeter
Cover of the book Historical Essay on the Neapolitan Revolution of 1799 by H.S.M. Coxeter
Cover of the book Northrop Frye's Notebooks on Renaissance Literature by H.S.M. Coxeter
Cover of the book Spanish Modernism and the Poetics of Youth by H.S.M. Coxeter
Cover of the book The Colonization of Mi'kmaw Memory and History, 1794-1928 by H.S.M. Coxeter
Cover of the book Shock Tubes by H.S.M. Coxeter
Cover of the book Just Ordinary Citizens? by H.S.M. Coxeter
Cover of the book Sisters or Strangers? by H.S.M. Coxeter
Cover of the book Political Responsibility Refocused by H.S.M. Coxeter
Cover of the book Acculturation and Its Discontents by H.S.M. Coxeter
Cover of the book The Artist as Monster by H.S.M. Coxeter
Cover of the book Sounding Objects by H.S.M. Coxeter
Cover of the book Nation and History by H.S.M. Coxeter
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy