Propagation and Extinction Studies of Laminar Lean Premixed Syngas/Air Flames

Nonfiction, Science & Nature, Science, Physics, Thermodynamics, Technology, Engineering, Mechanical
Cover of the book Propagation and Extinction Studies of Laminar Lean Premixed Syngas/Air Flames by Yang Zhang, Springer Singapore
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Yang Zhang ISBN: 9789811046155
Publisher: Springer Singapore Publication: July 18, 2017
Imprint: Springer Language: English
Author: Yang Zhang
ISBN: 9789811046155
Publisher: Springer Singapore
Publication: July 18, 2017
Imprint: Springer
Language: English

This thesis presents pioneering experimental and numerical studies on three aspects of the combustion characteristics of lean premixed syngas/air flames, namely the laminar flame speed, extinction limit and flammability limit. It illustrates a new extinction exponent concept, which enriches the combustion theory. 

Above all, the book provides the following: a) a series of carefully measured data and theoretical analyses to reveal the intrinsic mechanisms of the fuel composition effect on the propagation and extinction of lean syngas/air flames; b) a mixing model and correlation to predict the laminar flame speed of multi-component syngas fuels, intended for engineering computations; c) a new “extinction exponent” concept to describe the critical effects of chemical kinetics on the extinction of lean premixed syngas/air flames; and d) the effects and mechanism of the dilution of incombustible components on lean premixed syngas/air flames and the preferential importance among the thermal, chemical and diffusion effects.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This thesis presents pioneering experimental and numerical studies on three aspects of the combustion characteristics of lean premixed syngas/air flames, namely the laminar flame speed, extinction limit and flammability limit. It illustrates a new extinction exponent concept, which enriches the combustion theory. 

Above all, the book provides the following: a) a series of carefully measured data and theoretical analyses to reveal the intrinsic mechanisms of the fuel composition effect on the propagation and extinction of lean syngas/air flames; b) a mixing model and correlation to predict the laminar flame speed of multi-component syngas fuels, intended for engineering computations; c) a new “extinction exponent” concept to describe the critical effects of chemical kinetics on the extinction of lean premixed syngas/air flames; and d) the effects and mechanism of the dilution of incombustible components on lean premixed syngas/air flames and the preferential importance among the thermal, chemical and diffusion effects.

More books from Springer Singapore

Cover of the book Aerospace Materials and Material Technologies by Yang Zhang
Cover of the book Energy Relations and Policy Making in Asia by Yang Zhang
Cover of the book Fly Ash Zeolites by Yang Zhang
Cover of the book Modelling Trends in Solid and Hazardous Waste Management by Yang Zhang
Cover of the book Agriculture as a Metaphor for Creativity in All Human Endeavors by Yang Zhang
Cover of the book Public-Private Partnerships in Infrastructure by Yang Zhang
Cover of the book Advances in Medical Diagnostic Technology by Yang Zhang
Cover of the book Qualitative Research Using R: A Systematic Approach by Yang Zhang
Cover of the book Power Systems Grounding by Yang Zhang
Cover of the book Big Data Analytics by Yang Zhang
Cover of the book Biomaterials for Musculoskeletal Regeneration by Yang Zhang
Cover of the book The Case of the iPad by Yang Zhang
Cover of the book Sustainability of Organic Farming in Nepal by Yang Zhang
Cover of the book Foreign Language Learning Anxiety in China by Yang Zhang
Cover of the book Early Career Teachers by Yang Zhang
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy