Quadratic Residues and Non-Residues

Selected Topics

Nonfiction, Science & Nature, Mathematics, Number Theory, Algebra
Cover of the book Quadratic Residues and Non-Residues by Steve Wright, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Steve Wright ISBN: 9783319459554
Publisher: Springer International Publishing Publication: November 11, 2016
Imprint: Springer Language: English
Author: Steve Wright
ISBN: 9783319459554
Publisher: Springer International Publishing
Publication: November 11, 2016
Imprint: Springer
Language: English

This book offers an account of the classical theory of quadratic residues and non-residues with the goal of using that theory as a lens through which to view the development of some of the fundamental methods employed in modern elementary, algebraic, and analytic number theory.

The first three chapters present some basic facts and the history of quadratic residues and non-residues and discuss various proofs of the Law of Quadratic Reciprosity in depth, with an emphasis on the six proofs that Gauss published. The remaining seven chapters explore some interesting applications of the Law of Quadratic Reciprocity, prove some results concerning the distribution and arithmetic structure of quadratic residues and non-residues, provide a detailed proof of Dirichlet’s Class-Number Formula, and discuss the question of whether quadratic residues are randomly distributed. The text is a valuable resource for graduate and advanced undergraduate students as well as for mathematicians interested in number theory.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book offers an account of the classical theory of quadratic residues and non-residues with the goal of using that theory as a lens through which to view the development of some of the fundamental methods employed in modern elementary, algebraic, and analytic number theory.

The first three chapters present some basic facts and the history of quadratic residues and non-residues and discuss various proofs of the Law of Quadratic Reciprosity in depth, with an emphasis on the six proofs that Gauss published. The remaining seven chapters explore some interesting applications of the Law of Quadratic Reciprocity, prove some results concerning the distribution and arithmetic structure of quadratic residues and non-residues, provide a detailed proof of Dirichlet’s Class-Number Formula, and discuss the question of whether quadratic residues are randomly distributed. The text is a valuable resource for graduate and advanced undergraduate students as well as for mathematicians interested in number theory.

More books from Springer International Publishing

Cover of the book Modeling Life by Steve Wright
Cover of the book Qur’anic Guidance for Good Governance by Steve Wright
Cover of the book Grammar for Teachers by Steve Wright
Cover of the book Resurrecting Extinct Species by Steve Wright
Cover of the book Intelligent Distributed Computing XI by Steve Wright
Cover of the book Continuity Theory by Steve Wright
Cover of the book Climate Finance as an Instrument to Promote the Green Growth in Developing Countries by Steve Wright
Cover of the book Clinical Videoconferencing in Telehealth by Steve Wright
Cover of the book The Mathematics of Networks of Linear Systems by Steve Wright
Cover of the book Business Process Management Workshops by Steve Wright
Cover of the book 3D Microelectronic Packaging by Steve Wright
Cover of the book Advertising in Contemporary Consumer Culture by Steve Wright
Cover of the book Research into Childhood-Onset Diabetes by Steve Wright
Cover of the book Natural Disasters, Foreign Trade and Agriculture in Mexico by Steve Wright
Cover of the book Practitioner's Guide to Legal Issues in Organizations by Steve Wright
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy