Stochastic Flood Forecasting System

The Middle River Vistula Case Study

Nonfiction, Science & Nature, Science, Earth Sciences, Geophysics
Cover of the book Stochastic Flood Forecasting System by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319188546
Publisher: Springer International Publishing Publication: June 29, 2015
Imprint: Springer Language: English
Author:
ISBN: 9783319188546
Publisher: Springer International Publishing
Publication: June 29, 2015
Imprint: Springer
Language: English

This book presents the novel formulation and development of a Stochastic Flood Forecasting System, using the Middle River Vistula basin in Poland as a case study. The system has a modular structure, including models describing the rainfall-runoff and snow-melt processes for tributary catchments and the transformation of a flood wave within the reach. The sensitivity and uncertainty analysis of the elements of the study system are performed at both the calibration and verification stages. The spatial and temporal variability of catchment land use and river flow regime based on analytical studies and measurements is presented. A lumped parameter approximation to the distributed modelling of river flow is developed for the purpose of flow forecasting. Control System based emulators (Hammerstein-Wiener models) are applied to on-line data assimilation. Medium-range probabilistic weather forecasts (ECMWF) and on-line observations of temperature, precipitation and water levels are used to prolong the forecast lead time. The potential end-users will also benefit from a description of social vulnerability to natural hazards in the study area.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book presents the novel formulation and development of a Stochastic Flood Forecasting System, using the Middle River Vistula basin in Poland as a case study. The system has a modular structure, including models describing the rainfall-runoff and snow-melt processes for tributary catchments and the transformation of a flood wave within the reach. The sensitivity and uncertainty analysis of the elements of the study system are performed at both the calibration and verification stages. The spatial and temporal variability of catchment land use and river flow regime based on analytical studies and measurements is presented. A lumped parameter approximation to the distributed modelling of river flow is developed for the purpose of flow forecasting. Control System based emulators (Hammerstein-Wiener models) are applied to on-line data assimilation. Medium-range probabilistic weather forecasts (ECMWF) and on-line observations of temperature, precipitation and water levels are used to prolong the forecast lead time. The potential end-users will also benefit from a description of social vulnerability to natural hazards in the study area.

More books from Springer International Publishing

Cover of the book Standard EEG: A Research Roadmap for Neuropsychiatry by
Cover of the book Case-Based Inpatient Pediatric Dermatology by
Cover of the book Professors, Physicians and Practices in the History of Medicine by
Cover of the book Advancement of Optical Methods in Experimental Mechanics, Volume 3 by
Cover of the book Clinical Pulmonary Research by
Cover of the book Operations Research Proceedings 2014 by
Cover of the book The Impact of the Economic Crisis on South European Democracies by
Cover of the book Observational Constraints on the Influence of Active Galactic Nuclei on the Evolution of Galaxies by
Cover of the book Promoting Aboriginal Health by
Cover of the book HCI International 2015 - Posters’ Extended Abstracts by
Cover of the book Direction of Arrival Estimation and Localization of Multi-Speech Sources by
Cover of the book SCOTUS 2018 by
Cover of the book Trust Management XII by
Cover of the book Morphogenesis and Human Flourishing by
Cover of the book Multibody Dynamics by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy