Theories, Sites, Toposes

Relating and studying mathematical theories through topos-theoretic 'bridges'

Nonfiction, Religion & Spirituality, Philosophy, Logic, Science & Nature, Mathematics, Science
Cover of the book Theories, Sites, Toposes by Olivia Caramello, OUP Oxford
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Olivia Caramello ISBN: 9780191076756
Publisher: OUP Oxford Publication: January 19, 2018
Imprint: OUP Oxford Language: English
Author: Olivia Caramello
ISBN: 9780191076756
Publisher: OUP Oxford
Publication: January 19, 2018
Imprint: OUP Oxford
Language: English

According to Grothendieck, the notion of topos is "the bed or deep river where come to be married geometry and algebra, topology and arithmetic, mathematical logic and category theory, the world of the continuous and that of discontinuous or discrete structures". It is what he had "conceived of most broad to perceive with finesse, by the same language rich of geometric resonances, an "essence" which is common to situations most distant from each other, coming from one region or another of the vast universe of mathematical things". The aim of this book is to present a theory and a number of techniques which allow to give substance to Grothendieck's vision by building on the notion of classifying topos educed by categorical logicians. Mathematical theories (formalized within first-order logic) give rise to geometric objects called sites; the passage from sites to their associated toposes embodies the passage from the logical presentation of theories to their mathematical content, i.e. from syntax to semantics. The essential ambiguity given by the fact that any topos is associated in general with an infinite number of theories or different sites allows to study the relations between different theories, and hence the theories themselves, by using toposes as 'bridges' between these different presentations. The expression or calculation of invariants of toposes in terms of the theories associated with them or their sites of definition generates a great number of results and notions varying according to the different types of presentation, giving rise to a veritable mathematical morphogenesis.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

According to Grothendieck, the notion of topos is "the bed or deep river where come to be married geometry and algebra, topology and arithmetic, mathematical logic and category theory, the world of the continuous and that of discontinuous or discrete structures". It is what he had "conceived of most broad to perceive with finesse, by the same language rich of geometric resonances, an "essence" which is common to situations most distant from each other, coming from one region or another of the vast universe of mathematical things". The aim of this book is to present a theory and a number of techniques which allow to give substance to Grothendieck's vision by building on the notion of classifying topos educed by categorical logicians. Mathematical theories (formalized within first-order logic) give rise to geometric objects called sites; the passage from sites to their associated toposes embodies the passage from the logical presentation of theories to their mathematical content, i.e. from syntax to semantics. The essential ambiguity given by the fact that any topos is associated in general with an infinite number of theories or different sites allows to study the relations between different theories, and hence the theories themselves, by using toposes as 'bridges' between these different presentations. The expression or calculation of invariants of toposes in terms of the theories associated with them or their sites of definition generates a great number of results and notions varying according to the different types of presentation, giving rise to a veritable mathematical morphogenesis.

More books from OUP Oxford

Cover of the book Tragedy: A Very Short Introduction by Olivia Caramello
Cover of the book The Roman Empire: A Very Short Introduction by Olivia Caramello
Cover of the book Welfare Democracies and Party Politics by Olivia Caramello
Cover of the book Art and Belief by Olivia Caramello
Cover of the book SBAs and MCQs for the Final FRCA by Olivia Caramello
Cover of the book The Trojan Women and Other Plays by Olivia Caramello
Cover of the book The American by Olivia Caramello
Cover of the book The Culture of International Arbitration and The Evolution of Contract Law by Olivia Caramello
Cover of the book The Biology of Mangroves and Seagrasses by Olivia Caramello
Cover of the book Philosophical Foundations of Children's and Family Law by Olivia Caramello
Cover of the book The Oxford Companion to Classical Literature by Olivia Caramello
Cover of the book Philosophy of Law: A Very Short Introduction by Olivia Caramello
Cover of the book The Long Road to Stockholm by Olivia Caramello
Cover of the book Dachau and the SS by Olivia Caramello
Cover of the book Mental Actions by Olivia Caramello
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy