Wahrscheinlichkeitsrechnung bezogen auf das Beispiel: Das Kartenzählen bei dem Spiel 'Black Jack'

Nonfiction, Reference & Language, Education & Teaching, Teaching, Teaching Methods
Cover of the book Wahrscheinlichkeitsrechnung bezogen auf das Beispiel: Das Kartenzählen bei dem Spiel 'Black Jack' by Marius Triebel, GRIN Verlag
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Marius Triebel ISBN: 9783640609277
Publisher: GRIN Verlag Publication: April 30, 2010
Imprint: GRIN Verlag Language: German
Author: Marius Triebel
ISBN: 9783640609277
Publisher: GRIN Verlag
Publication: April 30, 2010
Imprint: GRIN Verlag
Language: German

Facharbeit (Schule) aus dem Jahr 2009 im Fachbereich Mathematik - Mathematik als Schulfach, Note: 2+, , Sprache: Deutsch, Abstract: 3. Die mathematische Analyse von Black Jack Im Nachfolgenden werde ich unter Anwendung der Wahrscheinlichkeitsrechnung beschreiben, wie man sich am besten Verhält, um seinen Verlust gering zu halten. Da der Spieler entscheiden kann, ob er noch eine Karte zieht, stellt sich die Frage, in welchem Fall das Ziehen überhaupt Sinn macht. Um einen Überblick zu verschaffen, erkläre ich die wichtigen Begriffe in der Wahrscheinlichkeitsrechnung. Die Wahrscheinlichkeitsrechnung ist ein Untergebiet der Stochastik und kommt aus dem Griechischen. Übersetzt heißt es so viel wie etwas Raten oder die Kunst des Vermutens. Definieren lässt sich der Begriff Wahrscheinlichkeit als 'Die Chance, dass ein Zufallsprozess ein bestimmtes Ergebnis hat'. Ein Ereignis wird definiert als: 'Werden bestimmte Ergebnisse eines Zufallsversuches zusammengefasst, so spricht man von einem Ereignis.' Unter anderem entwickelte Pierre Simon de Laplace eine Formel um die konstante Wahrscheinlichkeit zu berechnen; d.h. wenn das Eintreffen eines zufälligen Ereignisses immer gleich wahrscheinlich ist oder auch unabhängig voneinander ist. P(A) ist die Wahrscheinlichkeit eines Ereignisses (A). ? ist der Ergebnisraum. Bei Black Jack ist ?={2,3,4,5,6,7,8,9,10,B,D,K,A}. Beispiel: Wie ist die Wahrscheinlichkeit aus einem Kartenspiel mit 52 Karten eine Karte mit 8 Punkten zu ziehen? Die Anzahl der für E günstigen Versuchsergebnisse = 4 (da es vier Mal eine Karte mit 8 Punkten gibt). Die Anzahl der möglichen Versuchsergebnisse = 52 Eine Ausnahme sind die mit 10 Punkten gewerteten Karten. Die Wahrscheinlichkeit eine von diesen Karten zu ziehen ist viermal größer:

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Facharbeit (Schule) aus dem Jahr 2009 im Fachbereich Mathematik - Mathematik als Schulfach, Note: 2+, , Sprache: Deutsch, Abstract: 3. Die mathematische Analyse von Black Jack Im Nachfolgenden werde ich unter Anwendung der Wahrscheinlichkeitsrechnung beschreiben, wie man sich am besten Verhält, um seinen Verlust gering zu halten. Da der Spieler entscheiden kann, ob er noch eine Karte zieht, stellt sich die Frage, in welchem Fall das Ziehen überhaupt Sinn macht. Um einen Überblick zu verschaffen, erkläre ich die wichtigen Begriffe in der Wahrscheinlichkeitsrechnung. Die Wahrscheinlichkeitsrechnung ist ein Untergebiet der Stochastik und kommt aus dem Griechischen. Übersetzt heißt es so viel wie etwas Raten oder die Kunst des Vermutens. Definieren lässt sich der Begriff Wahrscheinlichkeit als 'Die Chance, dass ein Zufallsprozess ein bestimmtes Ergebnis hat'. Ein Ereignis wird definiert als: 'Werden bestimmte Ergebnisse eines Zufallsversuches zusammengefasst, so spricht man von einem Ereignis.' Unter anderem entwickelte Pierre Simon de Laplace eine Formel um die konstante Wahrscheinlichkeit zu berechnen; d.h. wenn das Eintreffen eines zufälligen Ereignisses immer gleich wahrscheinlich ist oder auch unabhängig voneinander ist. P(A) ist die Wahrscheinlichkeit eines Ereignisses (A). ? ist der Ergebnisraum. Bei Black Jack ist ?={2,3,4,5,6,7,8,9,10,B,D,K,A}. Beispiel: Wie ist die Wahrscheinlichkeit aus einem Kartenspiel mit 52 Karten eine Karte mit 8 Punkten zu ziehen? Die Anzahl der für E günstigen Versuchsergebnisse = 4 (da es vier Mal eine Karte mit 8 Punkten gibt). Die Anzahl der möglichen Versuchsergebnisse = 52 Eine Ausnahme sind die mit 10 Punkten gewerteten Karten. Die Wahrscheinlichkeit eine von diesen Karten zu ziehen ist viermal größer:

More books from GRIN Verlag

Cover of the book Quelleninterpretation Heinrich VIII - Crammer's sentence of divorce by Marius Triebel
Cover of the book Neue Formen der Leistungsbewertung by Marius Triebel
Cover of the book García Lorca im Spiegel seiner Übersetzer. Eine vergleichende Gegenüberstellung am Beispiel zweier Gedichte by Marius Triebel
Cover of the book Arguments against the Common Agricultural Policy of the EU by Marius Triebel
Cover of the book Auswirkungen eines 4-tägigen intermettierenden Hypoxie-Trainings auf die akute und subakute Leistungsfähigkeit in moderater Höhe (2000m) by Marius Triebel
Cover of the book Das sozialdemokratische Wohlfahrtsstaatsmodell in Schweden nach Gøsta Esping-Andersen by Marius Triebel
Cover of the book Der Standort als Erfolgsfaktor für professionelle Fußballunternehmen. Eine Standortfaktorenanalyse by Marius Triebel
Cover of the book An Empirical study on the Effectiveness of Training at a Biscuit Manufacturing Factory in Bangalore, India by Marius Triebel
Cover of the book Das Erzbistum Magdeburg - Gründung durch Kaiser Otto I. by Marius Triebel
Cover of the book Communication is Complex. Definitions, Types and Problems by Marius Triebel
Cover of the book Programme der Informationsverarbeitung by Marius Triebel
Cover of the book Basel II und Mittelstand - führt eine veränderte Kreditvergabepolitik zu weniger Investitionen für Deutschland? by Marius Triebel
Cover of the book Das Wilhelminische Kaiserreich in der Weltwirtschaft by Marius Triebel
Cover of the book Auswirkungen der Informations- und Kommunikationstechnologien und die Folgen eines Absturzes des Systems by Marius Triebel
Cover of the book Neuerungen in der europäischen Fusionskontrollverordnung Nr. 139 / 2004, insbesondere der SIEC-Test by Marius Triebel
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy