Konvergenz von Krylov-Verfahren für Eigenwertprobleme

Nonfiction, Science & Nature, Mathematics, Applied
Cover of the book Konvergenz von Krylov-Verfahren für Eigenwertprobleme by Alexander Weiß, GRIN Verlag
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Alexander Weiß ISBN: 9783638900836
Publisher: GRIN Verlag Publication: January 25, 2008
Imprint: GRIN Verlag Language: German
Author: Alexander Weiß
ISBN: 9783638900836
Publisher: GRIN Verlag
Publication: January 25, 2008
Imprint: GRIN Verlag
Language: German

Diplomarbeit aus dem Jahr 1998 im Fachbereich Mathematik - Angewandte Mathematik, Note: sehr gut, Eberhard-Karls-Universität Tübingen (Mathematische Fakultät), 9 Quellen im Literaturverzeichnis, Sprache: Deutsch, Abstract: Eigenwerte von Matrizen zu berechnen ist ein Problem, das häufig in naturwissenschaftlich-technischen Anwendungen auftritt. In der Theorie kann man mit Hilfe von Eigenwerten unter anderem Aussagen über die Stabilität von dynamischen Systemen machen. Außerdem spielen sie in der Stochastik, z.B. bei Markov-Ketten (Übergangswahrscheinlichkeiten, Brownsche Bewegung), eine wichtige Rolle. Nun einige Beispiele aus praktischen Anwendungen: - in der Physik bei Schwingungsproblemen - in der Chemie bei Verbrennungsprozessen - in der Makroökonomie bei der Überprüfung von Marktstabilität - in der Biologie bei Populationsmodellen Die hierbei auftretenden Fragen bzw. Aufgaben sind z.B.: Wie berechnet man - alle Eigenwerte und/oder alle Eigenvektoren für eine kleine Matrix (bis 10^3*10^3)? - einen Eigenwert und/oder den zugehörigen Eigenvektor (betragsgrößter, -kleinster, mit größtem Realteil,...)? - einige wenige Eigenwerte und gegebenenfalls die zugehörigen Eigenvektoren? - einen Eigenvektor zu einem bekannten Eigenwert (Markov-Ketten) Bei kleinen Matrizen, das heißt Matrizen der Größenordnung bis etwa 10^3*10^3, können diese mittels Householder-Transformationen auf Hessenberg-Form bzw. im hermiteschen Fall auf Tridiagonal-Form zurückgeführt werden. Dann kann man z.B. mit der QR-Zerlegung die gewünschten Eigenwerte und/oder die zugehörigen Eigenvektoren berechnen. In dieser Arbeit sollen Matrizen in der Größenordnung 10^3*10^3 bis 10^6*10^6 betrachtet werden. Da die erwähnten Standard-Algorithmen einen zu hohen Rechen- und Speicheraufwand verursachen, versucht man mittels Projektionsverfahren dieses große Problem auf ein kleines zu reduzieren, um darauf die Standardtechniken wieder anwenden und somit einen Teil des Spektrums approximieren zu können. Diese Arbeit hat die 'Konvergenz von Krylov-Verfahren für Eigenwertprobleme' zum Thema.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Diplomarbeit aus dem Jahr 1998 im Fachbereich Mathematik - Angewandte Mathematik, Note: sehr gut, Eberhard-Karls-Universität Tübingen (Mathematische Fakultät), 9 Quellen im Literaturverzeichnis, Sprache: Deutsch, Abstract: Eigenwerte von Matrizen zu berechnen ist ein Problem, das häufig in naturwissenschaftlich-technischen Anwendungen auftritt. In der Theorie kann man mit Hilfe von Eigenwerten unter anderem Aussagen über die Stabilität von dynamischen Systemen machen. Außerdem spielen sie in der Stochastik, z.B. bei Markov-Ketten (Übergangswahrscheinlichkeiten, Brownsche Bewegung), eine wichtige Rolle. Nun einige Beispiele aus praktischen Anwendungen: - in der Physik bei Schwingungsproblemen - in der Chemie bei Verbrennungsprozessen - in der Makroökonomie bei der Überprüfung von Marktstabilität - in der Biologie bei Populationsmodellen Die hierbei auftretenden Fragen bzw. Aufgaben sind z.B.: Wie berechnet man - alle Eigenwerte und/oder alle Eigenvektoren für eine kleine Matrix (bis 10^3*10^3)? - einen Eigenwert und/oder den zugehörigen Eigenvektor (betragsgrößter, -kleinster, mit größtem Realteil,...)? - einige wenige Eigenwerte und gegebenenfalls die zugehörigen Eigenvektoren? - einen Eigenvektor zu einem bekannten Eigenwert (Markov-Ketten) Bei kleinen Matrizen, das heißt Matrizen der Größenordnung bis etwa 10^3*10^3, können diese mittels Householder-Transformationen auf Hessenberg-Form bzw. im hermiteschen Fall auf Tridiagonal-Form zurückgeführt werden. Dann kann man z.B. mit der QR-Zerlegung die gewünschten Eigenwerte und/oder die zugehörigen Eigenvektoren berechnen. In dieser Arbeit sollen Matrizen in der Größenordnung 10^3*10^3 bis 10^6*10^6 betrachtet werden. Da die erwähnten Standard-Algorithmen einen zu hohen Rechen- und Speicheraufwand verursachen, versucht man mittels Projektionsverfahren dieses große Problem auf ein kleines zu reduzieren, um darauf die Standardtechniken wieder anwenden und somit einen Teil des Spektrums approximieren zu können. Diese Arbeit hat die 'Konvergenz von Krylov-Verfahren für Eigenwertprobleme' zum Thema.

More books from GRIN Verlag

Cover of the book A short research paper on Kurt Vonnegut's 'Slaughterhouse Five' by Alexander Weiß
Cover of the book Bestimmung der Dichte von Flüssigkeiten mit einem Aräometer (Senkspindel) (Unterweisung Chemielaborant/-in) by Alexander Weiß
Cover of the book Die männliche Herrschaft des 'NCIS'? by Alexander Weiß
Cover of the book War die Deindustrialisierung Ostdeutschlands eine Folge der Privatisierungspolitik? by Alexander Weiß
Cover of the book Touristische Perspektiven für die Brandenburger Peripherie?! by Alexander Weiß
Cover of the book Nationalparks - Tourismusattraktion oder Naturschutz? by Alexander Weiß
Cover of the book Zur Konzeption der Heimatkunde by Alexander Weiß
Cover of the book Michelangelos David im Kontext der architektonischen und politischen Geschichte der Piazza della Signoria und des Palazzo Vecchio by Alexander Weiß
Cover of the book Joseph Alois Schumpeter (1883-1950) by Alexander Weiß
Cover of the book Nachhaltigkeit im Handel und seine Auswirkungen auf das Kaufverhalten by Alexander Weiß
Cover of the book Singen im Musikunterricht by Alexander Weiß
Cover of the book Analyse des Internet-Memes 'Grumpy Cat' by Alexander Weiß
Cover of the book Zum Verhältnis von Camera Obscura und Malerei. Jan Vermeers 'Der Soldat und das lachende Mädchen' by Alexander Weiß
Cover of the book Der Zusammenhang des Guten und Schönen in Platons Symposion by Alexander Weiß
Cover of the book Bevölkerungs- und Kriminalitätsentwicklung zwischen 1960 und 2060 by Alexander Weiß
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy